College of Agriculture and Natural Resources

Kirklyn M. Kerr, B.S., D.V.M., M.S., Ph.D., Dean, College of Agriculture and Natural Resources
Suman Singh, Ph.D., Associate Dean, College of Agriculture and Natural Resources
Patricia Jepson, M.A., Academic Advisory Center Director

In 1862, Congress passed the Morrill Land Grant Act providing grants of federal land to each state. Funds from the sale of these lands were used in establishing a college teaching agriculture and related subjects in each state. Subsequent federal acts have enlarged the responsibilities of these colleges. Today they continue to serve agriculture and society in many ways through a variety of educational programs. The University of Connecticut is the land-grant university in Connecticut. The College of Agriculture and Natural Resources offers instruction at both undergraduate and graduate levels. Research and experimental work is carried on through the Storrs Agricultural Experiment Station. Educational and service programs are conducted throughout the State by the Cooperative Extension System. The College of Agriculture and Natural Resources is supported by both federal and state appropriations and contributions from the private sector.

The College maintains livestock, greenhouses, forested lands, gardens, orchards, and other related operations to supplement and enhance instruction, research, and service programs. The Northeastern Research Center for Wildlife Diseases, the Center for Environmental Health, the Water Resources Center, and the Food Marketing Policy Center are also integral parts of the College of Agriculture and Natural Resources.

The following departments offer undergraduate instruction in the College: Agricultural and Resource Economics, Animal Science, Natural Resources Management and Engineering, Nutritional Sciences, Pathobiology, and Plant Science. The Directory of Courses section of this Catalog describes the course offerings of these departments. Other courses are offered under the departmental listing Agriculture and Natural Resources.

The four-year curriculum leads to the Bachelor of Science degree.

Admission Requirements. See Admission to the University and New England Regional Student Program.

Scholarships. Over $200,000 in scholarships and awards are available to students in the College of Agriculture and Natural Resources.

Faculty Advisors. Faculty advisors are assigned to students upon entry into the College of Agriculture and Natural Resources according to a student’s major and area of special interest. Advisors assist students in the selection of appropriate courses and help them develop an individualized program of study for the Baccalaureate that will meet educational and career goals.

Bachelor’s Degree Requirements

Upon recommendation of the faculty the degree of Bachelor of Science is awarded by vote of the Board of Trustees to students who have met the following requirements: (1) earned a total of 120 degree credits; (2) earned at least a 2.0 grade point average for the total number of calculable credits for which they have been registered; (3) earned at least a 2.0 grade average for all calculable Upper Division course work; (4) met all the requirements of the University of Connecticut and the College of Agriculture and Natural Resources.

Plan of Study

Students should work closely with their advisors to review requirements, recommended courses, and career goals. Each student should prepare a tentative plan of study, outlining all courses, with an academic advisor as early as possible, but in no case later than at the start of the junior year. A final plan of study, approved by the major advisor and the department head, must be filed with the Degree Auditor no later than the end of the fourth week of classes of the semester in which a student expects to graduate.

General Education Requirements

All students in the College of Agriculture and Natural Resources must meet the University-wide General Education Requirements (GER) as described in the Appendix of this Catalog. Students must select approved courses to meet requirements.
Animal Science
This major provides four options leading to the B.S. degree: Pre-professional (veterinary medicine or graduate training), Business/Service, Equine Sciences and Production Management. By choice of option and selection of electives, Animal Science majors may prepare for a wide variety of careers in animal agriculture including biotechnology, agribusiness, education, extension education, biomedical sciences, livestock management and production, animal product processing, government service, laboratory animal management and trade or breed associations. All options can lead to certification in the American Registry of Professional Animal Scientists. Students preparing for graduate training in animal science or admission to a school of veterinary medicine should follow the pre-professional option.

The curriculum includes courses in cooperating departments within the University. Technical knowledge and practical skills are emphasized through Cooperative Education and other employment opportunities either domestically or internationally.

Species emphasized in the animal science curriculum include beef and dairy cattle, horses, poultry, sheep, swine, and companion and laboratory animals. Individualized programs of study may be developed to emphasize pre-veterinary medicine, animal breeding and genetics, animal physiology, animal nutrition, animal behavior, laboratory animal management, animal product technology, pre-graduate training, teaching, or production and management of livestock, poultry and companion animals.

Animal Science majors must pass the following courses:
One course in Biology (minimum 3 credits)
Chemistry 122 or 127Q
Animal Science 120, 216, 217, 219, 295
Pathobiology 200
Three of the following:
Animal Science 222, 235, 253 or 253W, 254, 269, 273, 275

A minor in Dairy Management is offered by the Department of Animal Science. For details please refer to the section entitled Dairy Management Minor.

Environmental Science
The major in Environmental Science is based in the physical and biological sciences, but also includes course work in selected areas of the social sciences. The major leads to a Bachelor of Science degree, and may be adopted by students in either the College of Agriculture and Natural Resources or the College of Liberal Arts and Sciences. This curriculum offers a comprehensive approach to the study of environmental problems, including not only a rigorous scientific background, but also detailed analyses of the social and economic implications of environmental issues. The complexity and interdisciplinary nature of environmental science is reflected in the core requirements of the major. These courses, assembled from several different academic departments representing two colleges, provide both breadth and depth, preparing students for careers that deal with environmental issues, and for graduate study in environmental science and related fields.

Because of the structure of the curriculum, all Environmental Science majors follow similar programs during the first two years. Students should decide before the end of their fourth semester on the concentration they wish to pursue for the remainder of their undergraduate program. The diversity of courses required for this degree mandates that students plan their curriculum carefully to meet the minimum requirements of the school in which they are registered. An appropriate advisor will be assigned at the time a concentration is declared. Undecided students should consult with the Director of the Environmental Science program in either the College of Agriculture and Natural Resources or the College of Liberal Arts and Sciences.

The University of Connecticut offers other means for students to pursue environmental interests, which may be more appropriate than the Environmental Science major for some students. In the College of Agriculture and Natural Resources, the departments of Agricultural and Resource Economics, Natural Resource Management and Engineering, and Plant Science offer majors and options for students interested in the environment.

Environmental Science majors must pass the following core requirements:

A. 100's Level Course Work (49-52 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 107, 108 or 110</td>
<td></td>
</tr>
<tr>
<td>ECON 112 or ARE 150</td>
<td></td>
</tr>
<tr>
<td>MARN 170</td>
<td></td>
</tr>
<tr>
<td>PHYS 131, 132 or 121, 122, 123</td>
<td></td>
</tr>
<tr>
<td>CHEM 127, 128</td>
<td></td>
</tr>
<tr>
<td>GEOL 102</td>
<td></td>
</tr>
<tr>
<td>MATH 115, 116 or 112, 113, 114</td>
<td></td>
</tr>
<tr>
<td>STAT 110 or 220</td>
<td></td>
</tr>
</tbody>
</table>

B. 200's Level Course Work (30-31 credits)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environmental Policy and Law</td>
<td></td>
</tr>
<tr>
<td>Select one course from:</td>
<td></td>
</tr>
<tr>
<td>ARE 234(W) – Environmental and Resource Policy</td>
<td></td>
</tr>
<tr>
<td>NRME 240 – Environmental Law</td>
<td></td>
</tr>
</tbody>
</table>

Environmental Economics
ARE 235 – Environmental and Resource Economics

Atmospheric Science
NRME 241 – Meteorology

Terrestrial Systems
GEOL 251 – Earth Surface Processes

Hydrosphere Dynamics
Select one course from:
EEB 247 – Limnology
GEOL 234 – Introduction to Ground Water Hydrology
MARN 220Q – Environmental Reaction and Transport
MARN 270 – Descriptive Physical Oceanography
NRME 245 – Introduction to Water Resources

Ecological Interactions
EEB 244(W) – General Ecology

Human Impact
GEOG 236 – Human Modifications of Natural Environments

Environmental Health
ANSC 226 – Environmental Health

Chemical and Microbial Reactions
Select one of the following two-course options:
1. CHEM 243, 244 (Organic Chemistry)
2. CHEM 141 (Organic Chemistry) and MCB 229 (Fundamentals of Microbiology) or MCB 203 (Introduction to Biochemistry)
3. CHEM 141 (Organic Chemistry) and GEOL 245 (Introduction to Geochemistry)

In addition to these core requirements, all students majoring in Environmental Science must also fulfill the requirements of a concentration in a discipline associated with the program before graduation. Approved concentrations are listed below: all consist of 4 or 5 courses in a specialized field, including a field course or an internship experience.

Resource Economics (Resource Economics, CANR) – Students must pass the following courses: ECON 218(Q), ARE 257, ARE 297. Additionally, students must pass at least two of the following: ARE 238, 255(W), 285, 215C

Environmental Health (Animal Science, CANR) – Students must pass courses in the categories listed:
Molecular and Cellular Biology: Choose any two: MCB 200, 211, 215, 229
Animal Science: Students must pass the following: ANSC 221, 224, 225
Other Departments: choose one of the following: NUSC 236, PATH 200, PATH 297, PHAR 241, PHAR 281, PNB 250(W)

Environmental Chemistry (Chemistry, CLAS) – Students must pass the following courses: CHEM 232Q, 245, 263Q, 264Q, 370

Environmental Biology (Ecology and Evolutionary Biology, CLAS) – All students must take EEB 293S. In addition, they must select at least one course from each of the following groups.

Group I -- Ecological Systems and Processes
EEB 238, 245, 294, 296, 310, PLSC 250

Group II -- Plant Ecology and Systematics
EEB 227, 256, 268, 271, 272, 277, 280

Group III -- Vertebrate Ecology and Systematics
EEB 200, 214, 281, 454, 465

Group IV -- Invertebrate Ecology and Systematics
EEB 243(W), 252, 275, 288

Environmental Geography (Geography, CLAS) – Students must pass the following: GEOG 232, 285W, 286W

In addition, students must pass one of the following courses: 240C, 246C

Environmental Geoscience (Geology, CLAS) – Students must pass the following: GEOL 212, 252, 253

Marine Science (Marine Science, CLAS) – Students are required to com-
complete four courses from the following list, but with no more than two courses from a single group.

Group A: 294, 236, 380, 331, 332
Group B: 280W, 371, 325
Group C: 275W
Group D: 270*, 372, 376

*Students may not use MARN 270 to satisfy both a hydrospheric dynamics requirement and a related area in marine sciences. Students choosing a concentration in marine science should satisfy their hydrospheric dynamics requirement with another course from that group.

Natural Resources (Natural Resources Management and Engineering, CANR) – Students must pass five courses from the following group: NRME 204, 205, 210, 214, 217, 237, 239P, 242, 260Q/260P, 287

Soil Science (Plant Science, CANR) – Students must pass the following courses: PLSC 205, 250, 259C

In addition, students must select two courses from the following: NRME 260Q/260P, PLSC 253(W), 258, 372, 375, 377, 378

Horticulture

The Department of Plant Science provides instruction in the horticultural areas of floriculture, fruit and vegetable crops, and ornamental horticulture. Curricular options for horticulture majors are Horticultural Commerce and Professional Horticulture. Horticulture has an important role in maintaining high-quality diets and enhancing environmental quality through the aesthetic and functional uses of plants. Career options include leadership positions in federal, state and local governments, public and private gardens, the Cooperative Extension System, education, research, and a variety of horticultural industries. Students planning to pursue graduate study should obtain a comprehensive background in the biological and physical sciences.

Horticulture majors must pass the following courses:

- Biology 110
- Chemistry 122 or 127Q
- Plant Science 250
- Plant Science 213 or Biology (MCB 259)

One of the following:

- Agricultural and Resource Economics 150 or 215C
- Economics 112 or 113
- Accounting 131

One of the following:

- Plant Science 260, 261, or 231
- Biology (EEB 272)
- Natural Resources Management and Engineering 214

Two of the following:

- PLSC 203, 204, 257, or EEB 288 or equivalent
- PLSC 212, 225, 227, 240, 240W, 244, 245, 263, 264, 289, or 292

In addition, horticulture majors must earn a minimum of 9 credits from the following departments:

- Biology
- Chemistry
- Computer Science
- Geology and Geophysics
- Mathematics
- Physics
- Statistics

Landscape Architecture

This major in the Department of Plant Science provides instruction in site planning and design, landscape history, plan graphics and presentation and the use of plants and other features to enrich exterior spaces. Through seminars, practicums, and internships, students learn to apply theory to actual case studies. Students may pursue careers in landscape architecture and related fields or apply for graduate programs in landscape architecture and planning. The program is accredited by the American Society of Landscape Architects.

Landscape Architecture majors must pass the following courses:

- Biology 110
- Chemistry 122 or 127Q
- Plant Science 250
- Plant Science 213 or MCB 259
- Geology 101 or 102

2 Students may not receive more than 12 credits for courses in Biology at the 100’s level.
3 Math 101 cannot be used to meet this requirement.
4 See Statistics section for credit restrictions.

COLLEGE OF AGRICULTURE AND NATURAL RESOURCES 33

Plant Science 247, 255, 256, 260, 262, 265, 266, 267, 270, 275, 277, 278, 280, 281, 293

Accreditation and space restrictions necessitate that the number of students in the Landscape Architecture program be limited. All students admitted into the Landscape Architecture program will be evaluated at the end of their third semester (or middle of their sophomore year). Students will be allowed to continue in the program based upon their TGPA, successful completion of recommended courses during their first and second semester, and grades earned in the introductory Landscape Architecture courses offered during the third semester (PLSC 255: Landscape Design Drawing, and PLSC 275: Landscape Design). Students who do not meet these requirements may want to consider other majors including Horticulture or the turf option in Agronomy.

A minor in Landscape Design is offered by the Department of Plant Science. For details, please refer to the section entitled Landscape Design Minor.

Natural Resources

Natural Resources, offered by Natural Resources Management and Engineering, is a field concerned with understanding and managing the many natural systems in agriculture, forestry, wildlife, watersheds and other terrestrial and aquatic ecosystems. The primary focus is productivity of renewable natural resources to benefit society’s economic and social well-being including: (1) functional biophysical relationships; (2) causes and effects of ecosystem exploitation and destruction; (3) changes and effects on ecosystems due to management for increased production or improved quality; and (4) economic and ethical considerations in managerial and policy decisions. Electives permit emphasis on a wide variety of interest and provide a strong liberal education as a basis for life-long learning.

The major provides basic preparation for careers in one of the natural resources professions or fields of applied science. Such careers deal with the allocation, utilization and management of the diverse resource base. Employment opportunities are found in the private sector or with local, state or federal government agencies.

Students who are interested in a research career in a specific area, such as forestry, water, wildlife, fisheries or soil and water conservation, should plan on earning an advanced degree.

Natural Resources majors must pass the following courses:

- Natural Resources Management and Engineering 100, 239P, 242, 252, 256, 295
- Plant Science 250
- Biology (EEB) 244 or 244W
- Mathematics 113 or 115
- One course in Chemistry
- One course in Statistics
- One course in Physics or Geology

Students must also earn an additional 12 credits in NRME courses, numbered 200 or above.

Students should meet with their advisors to select specific courses in Natural Resources Management and Engineering and other departments. Students may focus on specific areas such as fisheries, forestry, wildlife, water, land use and planning, cartography, resource-based business, or public administration. Several options and recommended programs of study are available to allow selection of courses according to individual interests.

Nutritional Sciences

Four options in this major lead to the B.S. degree: Dietetics, Nutritional Biochemistry, Food Science, and Nutrition Fundamentals. These options combined with selected elective courses prepare students for careers in dietetics, the food industry, health and human services, and education including outreach programs such as community nutrition, sports nutrition, the Cooperative Extension System, and governmental and private health and human service programs.

Dietetic Program. The Didactic Program in Dietetics, offered through the Department of Nutritional Sciences, is approved by the American Dietetic Association (ADA) for students preparing to become Registered Dietitians. Students concurrently complete requirements for a Bachelor of Science degree in Nutritional Sciences and ADA course requirements for the Didactic program in Dietetics. After completion of required courses the students are eligible to apply for a Dietetic Internship or AP4. Students preparing to become Registered Dietitians are required to pass courses listed in the Didactic Program, complete a Dietetic Internship or AP4, and pass the ADA Registration Examination. Students need to keep abreast of changes in requirements by consulting with the dietetics program director in Nutritional Sciences. Dietetic Internships and AP4’s
Nutritional Biochemistry is a program dealing with organ, cellular, and subcellular levels of nutrition. It provides training for careers in research or medicine and meets the entrance requirements for medical schools. Graduates often conduct research in food companies, drug companies, and pursue graduate education, medical education, or other allied health degrees (e.g., physical therapy, dentistry).

Food Science is a program dealing with the control of chemical, physical, and microbiology changes in food during production, processing, packaging, storage, distribution, preparation, and utilization. Graduates often work in product development, quality assurance, and pursue graduate education.

Nutrition Fundamentals provides a broad background in nutrition, which allows more flexibility in career goals. This option includes Community Nutrition, and Food Service Management. Community Nutrition students enroll in more social science courses to enhance their ability to assist individuals, families, and private and public agencies and to evaluate and address nutritional needs in the community setting. Food Service Management includes more management courses. Field experiences are usually part of the Food Service Management and Community Nutrition options.

Nutritional Sciences majors must successfully complete the following courses:

- Nutritional Sciences 165
- Nutritional Sciences 200
- Chemistry 127 and 128, or Chemistry 122
- Chemistry 141, or 243 and 244
- Biology (PNB) 264 and 265, or Biology 107, 108 and (PNB) 250
- Biology (MCB) 203 or 204 or 229

In addition to the courses listed above, a minimum of 8 credits, numbered 200 or above, must be earned from courses in the Department of Nutritional Sciences. Credits earned in field experiences and independent studies cannot be used to meet this 8-credit requirement. Specific course recommendations are listed in the Programs Available brochure in the department.

Pathobiology majors must pass the following courses:

- PATH 297
- One course in Microbiology: MCB 229
- One course in Biochemistry: MCB 203 or MCB 204
- One course in Genetics: MCB 200, MCB 213, or ANSC 217
- One course in Nutrition or Immunology: ANSC 216, NUSC 165, MCB 211, or MLS 208W
- Three of the following courses: PATH 200, 202, 248, 252, 296

Resource Economics

The Resource Economics major in the Department of Agricultural and Resource Economics applies economic and business methods to address problems pertaining to the production and distribution of food products and the management of natural resources and the environment. There is a wide range of areas of specialization including environmental economics and policy, marketing and business management, and international agricultural development and trade. Students can go through either a structured curriculum or with the assistance of a faculty advisor, create one to meet individual career goals. Our graduates pursue careers in environmental fields, business management and marketing, resource and recreational management, and banking and finance. The Resource Economics program also provides students with the background to pursue graduate studies.

Resource Economics majors do not have to meet specific course requirements, but must complete the 36 credit, 200-level requirement as approved by advisor and department head.

Double Major Option. Students may elect to complete requirements for two major fields of study offered by the College of Agriculture and Natural Resources. A student selecting this option must submit a Double Major Declaration form indicating primary and secondary majors. This declaration must include a tentative plan of study and requires approval by the advisors and department heads for both respective major areas of study and the Associate Dean. Once an approved declaration has been submitted to the Degree Auditor, the student must complete the requirements for both majors in order to graduate. Withdrawal of the Double Major Declaration requires the approval of the Associate Dean. The student’s final plan and record of study will include a double major attachment to verify that the requirements have been met for both the primary and secondary majors. The transcript will identify both majors.

Primary Major: Students must meet all requirements as listed under “Requirements for a Major” (36 credit group) and all individual major requirements as listed above.

Secondary Major: Students must meet all individual major requirements as listed above and successfully complete additional 200-level course work not used as part of the 36 credit group for the primary major. This group of courses must:

1. total not less than 24 credits
2. be numbered 200 or above
3. be approved by student’s advisor and department head
4. be taken at the University of Connecticut
5. include at least 15 credits of College of Agriculture and Natural Resources courses
6. average at least a 2.0 Grade Point Average
7. not include more than six credits of Independent Study and Internship
8. not be taken on Pass/Fail.

Undergraduate Minors

Aquaculture Minor

This minor will provide interested students with a basic understanding of aquaculture, especially in closed circulation systems. Students will be required to complete 18 credits which include a common core for all students and a selection of courses based on a specific area of interest. The requirements for the minor are:

- NRME 208, EEB 200, PNB 235, one 2-credit internship (as approved by advisor), and two courses from the following:
 - NRME 235Q
 - ARE 215C
 - ANSC 253
 - NUSC 212
 - EEB 294/MARN 294

Dairy Management Minor

The minor in Dairy Management is intended to provide interested students with an in-depth exposure to all aspects of dairy farm management including quality milk production, cattle health management, personnel management, and farm financial management. Students will have the opportunity to manage a portion of the UConn dairy herd and be responsible for daily activities and short and long-term decision-making. Completion of the program will provide students with the knowledge base necessary to pursue employment in dairy production at the managerial level or to seek employment in other aspects of the dairy industry. The requirements for this minor are:

- ANSC 275
- ANSC 277S
- ANSC 278
- PATH 202
- ARE 215C
- ARE 217

Landscape Design Minor

The minor in Landscape Design will provide an introduction to landscape architecture, the communication of ideas via presentation drawing, and the methodology of designing the landscape to meet individual and societal needs. These concepts will be complemented by appropriate course work in the ornamentation and maintenance of the landscape environment as well as consideration of contemporary issues affecting landscape development.
Students in this minor must pass:
PLSC 255
PLSC 202

And three of the following courses:
PLSC 231
PLSC 247
PLSC 260

Pre-veterinary Medicine Programs. Prerequisites for entry into a professional curriculum in veterinary medicine may be obtained by majoring in Animal Science or Pathobiology. The Animal Science major is most appropriate for students interested in biotechnology, physiology, nutrition, genetics, behavior, or production and management. Pathobiology is appropriate for students interested in biomedical science, medical biotechnology, ecology of diseases, anatomy, microbiology, or diseases of wildlife. Both programs offer excellent opportunities for education in the biological sciences.

Honors Programs. University honors programs are available to qualified students in the College. Please refer to the section of this Catalog designated “Honors Programs” for further information.

Transfer Students. Transfer students can use transfer credits to meet General Education requirements and 100-level course requirements in a specific major. Transfer students may apply a maximum of six credits of 200-level work toward the 36 credit requirement for a major. These credits must be identified as courses comparable to specific University of Connecticut courses and cannot include internships, special topics, or unassigned credits. Transfer students must complete at least 30 credits of 200-level course work at the University of Connecticut, including at least 15 credits in College of Agriculture and Natural Resources courses.

Exemptions and Substitutions. Students requesting an exemption from any University and/or College requirement, or a substitution for a course or requirement, should consult their advisors. Such exemptions or substitutions must be approved by the department head and the Associate Dean of the College and may require approval of the Vice President for Academic Affairs.

Field Trips and Transportation Costs. Many courses require off-campus field trips. Students should budget money for participation.

Graduate Programs. Most departments provide graduate programs for students interested in greater specialization beyond the baccalaureate. The study may lead to a Master of Science or Doctor of Philosophy degree. Students planning for a graduate program should secure a comprehensive background in the basic sciences. For further information see the announcement of the Graduate School.

Computer Laboratory
A computer laboratory is available for student use in Room 108 of the Ratcliffe Hicks Building. Instructors schedule classes in the facility when appropriate, and the room is open additional hours for individual student use.

The Storrs Agricultural Experiment Station
The Storrs Agricultural Experiment Station, the research arm of the College of Agriculture and Natural Resources, is part of a nationwide system of research institutions tracing their origin to the passage of the Hatch Act in 1887. The Station’s mission is to promote the effective use of natural resources in the production of food, fiber, and derived products, while preserving the quality of the environment, and to improve the quality of life for the people of the state. Research emphasis is on improving the understanding of the basic biology and chemistry of economically important plants and animals, developing efficient technologies that will sustain the major agricultural enterprises in the state, expanding our knowledge base in selected aspects of human nutrition, and applying the methodology of biotechnology to plant and animal improvement programs. Results of Station studies are published in national and international journals and by the Storrs Station as bulletins, research reports, and monographs. Information obtained broadens the scientific foundation of agriculture and contributes to the understanding of fundamental processes. Financial support is furnished by Federal and State appropriations and by grants from industry, foundations, and Federal agencies such as the National Science Foundation, National Institutes of Health, and the U.S. Departments of Agriculture, Energy, and Commerce.

Northeastern Research Center for Wildlife Diseases
The Center is a regional facility created to investigate diseases of wildlife and their effects on people, domestic animals, and the environment. The Center serves the New England states plus New York, Pennsylvania and New Jersey.

Institute of Water Resources
The Institute of Water Resources promotes and supports programs relating to water quality, quantity, and use in Connecticut.

Center for Environmental Health
The Center for Environmental Health develops interdisciplinary methods for solving environmental problems. Although the interests of the Center include all areas of environmental concerns, the main focus is on human health, with an emphasis relevant to Connecticut.

Food Marketing Policy Center
The Food Marketing Policy Center conducts research on competition, cooperatives, food safety regulation, and antitrust policy in food markets. It is the core research group for an international consortium that includes researchers from 27 universities, government agencies, and private research organizations. Members are from the United States, Canada, England, France, Italy, and Japan.

Cooperative Extension System
The Cooperative Extension System (CANR), one of the three major components of the College of Agriculture and Natural Resources, is an integral part of the University of Connecticut’s outreach efforts. Established by federal land grant legislation in 1914, the Cooperative Extension System’s mission is to educate the people of Connecticut on adapting to a rapidly changing society and on improving their lives. This program is supported by state and federal funds. Additional resources are obtained through grant awards.

Cooperative Extension programming uses a multi-disciplinary approach and focuses on increasing the competitiveness of Connecticut’s agriculture and aquaculture, protecting the environment and developing the potential of the state’s families, individuals, and youth living in urban, suburban and rural communities. Cooperative Extension professionals in partnership with local citizen advisory groups, agencies, organizations and businesses, provide noncredit education to youth and adults one-on-one, in groups or via mass media. Content areas include food safety, economic viability, aquaculture, water resources, family and youth development, horticulture systems, animal health, dairy/livestock, and public policy/ issues education.

Storrs-based CANR department faculty with Cooperative Extension assignments and extension faculty cooperate in developing and presenting programs. Extension field faculty and professional staff work from eight Cooperative Extension Centers which are positioned as doorways to the University. They provide easy access for potential students and other Connecticut residents who want to take advantage of the many educational resources available through UConn. Extension professionals also work from four 4-H camps and the only 4-H Farm Resource Center in the United States. Program assistants extend the effectiveness of Extension Educators through specially funded programs designed to foster positive youth development and the ability of families with limited resources to make good food choices and to manage their resources. Several thousand volunteers are recruited and trained to further extend the outreach of Cooperative Extension professionals. UConn students, both undergraduate and graduate, are encouraged to inquire about possible field work and volunteer opportunities. Each year more than half a million state residents enrich their quality of life by applying knowledge gained through educational opportunities provided by the University of Connecticut Cooperative Extension System. For more details about Cooperative Extension, please call (860) 486-1987.

College of Agriculture and Natural Resources Website
http://www.canr.uconn.edu/