Environmental Engineering (ENVE)

Program Director: Professor Emmanouil N. Anagnostou

Office: Room 313, F.L. Castleman Building

1000. Environmental Sustainability

Three credits.

Detailed examination of anthropogenic impacts on the environment, resulting from the need for energy, food and shelter. Subtopics in the broad areas of energy, food, shelter, waste, water, sustainable development will be grounded with case studies of UCONN activities/programs in sustainability. Overarching and linking each topic is the impact of population and water resources with a focus on environmental literacy. Resolution of scientific/technological, public policy and economic aspects of environmental sustainability issues will be explored, including strategies for success, and possible pitfalls, in achieving environmental sustainability in the subtopic areas. CA 2.

2310. Environmental Engineering Fundamentals

(Also offered as CE 2310.) Three credits. Prerequisites: CHEM 1128Q or 1148Q.

Concepts of aqueous chemistry, biology, and physics applied in a quantitative manner to environmental problems and solutions. Mass and energy balances, chemical reaction engineering. Quantitative and fundamental description of water and air pollution problems. Environmental regulations and policy, pollution prevention, risk assessment. Written and oral reports.

2320. The Environmental Debate II

One credit. May be repeated for credit (maximum of 3 credits).

Structured review of environmental issues and active debate during class time. Presentation of current environmental issues by environmental professionals and experts.

3100. Climate Resilience and Adaptation: Municipal Policy and Planning

Three credits. Prerequisite: Open to students in the School of Engineering of junior or higher status; instructor consent required. Recommended preparation: ENVE 1000. This course and ME 3250 may not both be taken for credit.

An interdisciplinary study of climate change focusing on the local, municipal scale: impacts, policy, vulnerability and adaptation with emphasis on tools such as vulnerability assessments that help local communities determine priorities for adaptation efforts.

3120. Fluid Mechanics

(Also offered as CE 3120.) Four credits. Three class periods and one-3 hour laboratory period. Prerequisite: CE 2110; MATH 2110 and 2410Q; enrollment in the School of Engineering. Recommended preparation: CE 2120. This course and ME 3250 may not both be taken for credit.

Statics of fluids, analysis of fluid flow using principles of mass, momentum and energy conservation from a differential and control volume approach. Dimensional analysis. Application to pipe flow and open channel flow. Laboratory activities and written lab reports

3200. Environmental Engineering Laboratory

Three credits. Two class periods and one 3-hour laboratory period. Prerequisite: CE/ENVE 2310; enrollment in the School of Engineering.

Aqueous analytical chemical techniques, absorption, coagulation/flocculation, fluidization, gas stripping, biokinetics, interpretation of analytical results, bench-scale design projects, written and oral reports. A fee of $29 is charged for this course.

3220. Water Quality Engineering

Three credits. Prerequisites: CE/ENVE 2310; enrollment in the School of Engineering.

Physical, chemical, and biological principles for the treatment of aqueous phase contaminants; reactor dynamics and kinetics. Design projects.

3230. Introduction to Air Pollution

Three credits. Prerequisite: Enrollment in the School of Engineering. Recommended preparation: CHEG 2111 or ME 2233.

Gaseous pollutants and their properties; basic analytical techniques for air pollutants; particulate pollutants and their properties; equipment design for removal of gaseous and particulate materials; economic and environmental impact of air pollutants; federal and state regulations.

3270. Environmental Microbiology

Three credits. Prerequisite: Enrollment in the School of Engineering.

Content includes general microbiology, cell structure, cell growth kinetics, and genetics. In addition to the fundamental microbiological mechanisms, the application of microbial knowledge in natural environment and engineering systems (including water and wastewater treatment, soil and solid waste treatment) is also included. Will broaden the students’ views of microbiological fundamentals and the applications to environmental systems.

3300W. Environmental Engineering Technical Communication

One credit. Prerequisite: ENVE 2310; ENGL 1010 or 1011 or 2011; concurrent with ENVE 3200; instructor consent required. Bushey

Basic technical writing for the environmental engineering field. Students will step through the various sections of technical reporting, obtaining feedback on each section before compiling complete formal reports. Students will also gain an appreciation for teamwork and effective oral communication. Written assignments will mirror those in ENVE 3200.

3530. Engineering and Environmental Geology

(Also offered as CE 3530 and GSCI 3710.) Three credits. Recommended preparation: GSCI 1050 or 1051.

Application of geological principles to engineering and environmental problems. Topics include site investigations, geologic hazards, slope processes, earthquakes, subsidence, and the engineering properties of geologic materials. Course intended for both geoscience and engineering majors.

3995. Special Topics in Environmental Engineering

Credits and hours by arrangement as announced. Prerequisite and or consent: Announced separately for each course; enrollment in the School of Engineering. Course may be repeated for credit. Classroom or laboratory course on specific topics as announced.

4210. Environmental Engineering Chemistry

(Formerly offered as ENVE 3210.) Three credits. Prerequisite: (CHEM 1128 or 1148) and MATH 2410; enrollment in the School of Engineering.

Quantitative variables governing chemical behavior in environmental systems. Thermodynamics and kinetics of acid/base, coordination, precipitation/dissolution, and redox reactions. Organic chemistry nomenclature.

4310. Environmental Modeling

Three credits. Prerequisite: CE 2310 and (CHEG 3123 or CE 3120); enrollment in the School of Engineering.

Systematic approach for analyzing contamination problems. Systems theory and modeling will be used to assess the predominant processes that control the fate and mobility of pollutants in the environment. Assessments of lake eutrophication, conventional pollutants in rivers and estuaries and toxic chemicals in groundwater.

4320. Ecological Principles and Engineering

Three credits. Prerequisite: ENVE 3220; enrollment in the School of Engineering. Corequisite: ENVE 4210.

An introduction to ecology and natural treatment systems for managing waste and pollutants with a focus on aqueous contaminants. Topics will include stormwater management, treatment wetlands, restoration ecology, composting, and bioremediation.

4530. Geoenvironmental Engineering

(Also offered as CE 4530.) Three credits. Prerequisite: CE/ENVE 2310; enrollment in the School of Engineering.

Principles of solid waste management; design of landfills and waste containment systems; compacted clay liners and slurry walls; overview of soil remediation techniques.

4810. Engineering Hydrology

(Also offered as CE 4810.) Three credits. Prerequisites: CE/ENVE 3120 or CHEG 3123; enrollment in the School of Engineering.

Hydrologic cycle: precipitation, interception, depression storage, infiltration, evapotranspiration, overland flow, snow hydrology, groundwater and streamflow processes. Stream hydrographs and flood routing. Hydrologic modeling and design. Computer applications. Design project.

4820. Hydraulic Engineering

Three credits. Prerequisites: CE/ENVE 3120 or CHEG 3123; enrollment in the School of Engineering.

Design and analysis of water and wastewater transport systems, including pipelines, pumps, pipe networks, and open channel flow. Introduction to hydraulic structures and porous media hydraulics. Computer applications.

4886. Thesis I

One credit. Prerequisite: Consent of instructor; enrollment in the School of Engineering.

Introduction to research through literature review and preparation of a research proposal.

4896. Thesis II

Two credits. Prerequisite: ENVE 4886.

Execution of the research proposal prepared in Thesis I, preparation of written report and oral defense.

4910W. Environmental Engineering Design I

Two credits. Prerequisite: ENGL 1010 or 1011 or 2011. To be taken during the senior year.

Students working individually or in groups produce solution to environmental engineering design projects from data acquisition through preliminary design, cost estimating and final specifications, oral presentation and written reports.

4920W. Environmental Engineering Design II

Two credits. Prerequisite: ENVE 4910W; ENGL 1010 or 1011 or 2011. To be taken during the senior year.

Students working individually or in groups complete the implementations of protocols and techniques covered in ENVE 4910W, final cost of entire project, feasibility, oral presentation and written reports. Instructors will supply initial conditions and performance expectations.

4999. Independent Study

Credits by arrangement, not to exceed six in any semester. Prerequisite: Open only with consent of instructor; enrollment in the School of Engineering.

Individual study of special topics in law as mutually arranged between student and instructor.

Back to top